Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(7)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203264

RESUMO

Brachial plexus root avulsions cause debilitating upper limb paralysis. Short-term neuroprotective treatments have reported preservation of motor neurons and function in model animals while reports of long-term benefits of such treatments are scarce, especially the morphological sequelae. This morphological study investigated the long-term suppression of c-Jun- and neuronal nitric oxide synthase (nNOS) (neuroprotective treatments for one month) on the motor neuron survival, ultrastructural features of lower motor neurons, and forelimb function at six months after brachial plexus roots avulsion. Neuroprotective treatments reduced oxidative stress and preserved ventral horn motor neurons at the end of the 28-day treatment period relative to vehicle treated ones. Motor neuron sparing was associated with suppression of c-Jun, nNOS, and pro-apoptotic proteins Bim and caspases at this time point. Following 6 months of survival, neutral red staining revealed a significant loss of most of the motor neurons and ventral horn atrophy in the avulsed C6, 7, and 8 cervical segments among the vehicle-treated rats (n = 4). However, rats that received neuroprotective treatments c-Jun JNK inhibitor, SP600125 (n = 4) and a selective inhibitor of nNOS, 7-nitroindazole (n = 4), retained over half of their motor neurons in the ipsilateral avulsed side compared. Myelinated axons in the avulsed ventral horns of vehicle-treated rats were smaller but numerous compared to the intact contralateral ventral horns or neuroprotective-treated groups. In the neuroprotective treatment groups, there was the preservation of myelin thickness around large-caliber axons. Ultrastructural evaluation also confirmed the preservation of organelles including mitochondria and synapses in the two groups that received neuroprotective treatments compared with vehicle controls. Also, forelimb functional evaluation demonstrated that neuroprotective treatments improved functional abilities in the rats. In conclusion, neuroprotective treatments aimed at suppressing degenerative c-Jun and nNOS attenuated apoptosis, provided long-term preservation of motor neurons, their organelles, ventral horn size, and forelimb function.


Assuntos
Plexo Braquial/fisiopatologia , Membro Anterior/fisiopatologia , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Óxido Nítrico Sintase Tipo I/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Radiculopatia/fisiopatologia , Raízes Nervosas Espinhais/fisiopatologia , Animais , Células do Corno Anterior/efeitos dos fármacos , Células do Corno Anterior/patologia , Neurônios Motores/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Radiculopatia/tratamento farmacológico , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Raízes Nervosas Espinhais/efeitos dos fármacos
2.
Brain Sci ; 11(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202110

RESUMO

Dexmedetomidine, selective α2-adrenergic agonist dexmedetomidine, has been widely used clinically for sedation and anesthesia. The role of dexmedetomidine has been an interesting topic of neonatological and anesthetic research since a series of advantages of dexmedetomidine, such as enhancing recovery from surgery, reducing opioid prescription, decreasing sympathetic tone, inhibiting inflammatory reactions, and protecting organs, were reported. Particularly, an increasing number of animal studies have demonstrated that dexmedetomidine ameliorates the neurological outcomes associated with various brain and spinal cord injuries. In addition, a growing number of clinical trials have reported the efficacy of dexmedetomidine for decreasing the rates of postoperative neurological dysfunction, such as delirium and stroke, which strongly highlights the possibility of dexmedetomidine functioning as a neuroprotective agent for future clinical use. Mechanism studies have linked dexmedetomidine's neuroprotective properties with its modulation of neuroinflammation, apoptosis, oxidative stress, and synaptic plasticity via the α2-adrenergic receptor, dependently or independently. By reviewing recent advances and preclinical and clinical evidence on the neuroprotective effects of dexmedetomidine, we hope to provide a complete understanding of the above mechanism and provide insights into the potential efficacy of this agent in clinical use for patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...